Hand Frequency Probability Cumulative Odds Mathematical expression of frequency
Royal flush 4 0.000154% 0.000154% 649,739 : 1
{4 \choose 1}
Straight flush
(excluding royal flush)
36 0.00139% 0.00154% 72,192.33 : 1
{10 \choose 1}{4 \choose 1} - {4 \choose 1}
Four of a kind 624 0.0240% 0.0256% 4,164 : 1
{13 \choose 1}{4 \choose 4}{48 \choose 1}
Full house 3,744 0.144% 0.170% 693.2 : 1
{13 \choose 1}{4 \choose 3}{12 \choose 1}{4 \choose 2}
Flush 5,108 0.197% 0.367% 507.8 : 1
{13 \choose 5}{4 \choose 1} - {10 \choose 1}{4 \choose 1}
Straight 10,200 0.392% 0.76% 253.8 : 1
{10 \choose 1}{4 \choose 1}^5 - {10 \choose 1}{4 \choose 1}
Three of a kind 54,912 2.11% 2.87% 46.3 : 1
{13 \choose 1}{4 \choose 3}{12 \choose 2}{4 \choose 1}^2
Two pair 123,552 4.75% 7.62% 20.03 : 1
{13 \choose 2}{4 \choose 2}^2{11 \choose 1}{4 \choose 1}
One pair 1,098,240 42.3% 49.9% 1.37 : 1
{13 \choose 1}{4 \choose 2}{12 \choose 3}{4 \choose 1}^3
No pair / High card 1,302,540 50.1% 100% 0.995 : 1
\left[{13 \choose 5} - 10\right]\left[{4 \choose 1}^5 - 4\right]
Total 2,598,960 100% 100% 0 : 1
{52 \choose 5}
If this is confusing to anyone, a graphical version can be viewed here:
Poker probability - Wikipedia, the free encyclopedia
Royal flush 4 0.000154% 0.000154% 649,739 : 1
{4 \choose 1}
Straight flush
(excluding royal flush)
36 0.00139% 0.00154% 72,192.33 : 1
{10 \choose 1}{4 \choose 1} - {4 \choose 1}
Four of a kind 624 0.0240% 0.0256% 4,164 : 1
{13 \choose 1}{4 \choose 4}{48 \choose 1}
Full house 3,744 0.144% 0.170% 693.2 : 1
{13 \choose 1}{4 \choose 3}{12 \choose 1}{4 \choose 2}
Flush 5,108 0.197% 0.367% 507.8 : 1
{13 \choose 5}{4 \choose 1} - {10 \choose 1}{4 \choose 1}
Straight 10,200 0.392% 0.76% 253.8 : 1
{10 \choose 1}{4 \choose 1}^5 - {10 \choose 1}{4 \choose 1}
Three of a kind 54,912 2.11% 2.87% 46.3 : 1
{13 \choose 1}{4 \choose 3}{12 \choose 2}{4 \choose 1}^2
Two pair 123,552 4.75% 7.62% 20.03 : 1
{13 \choose 2}{4 \choose 2}^2{11 \choose 1}{4 \choose 1}
One pair 1,098,240 42.3% 49.9% 1.37 : 1
{13 \choose 1}{4 \choose 2}{12 \choose 3}{4 \choose 1}^3
No pair / High card 1,302,540 50.1% 100% 0.995 : 1
\left[{13 \choose 5} - 10\right]\left[{4 \choose 1}^5 - 4\right]
Total 2,598,960 100% 100% 0 : 1
{52 \choose 5}
If this is confusing to anyone, a graphical version can be viewed here:
Poker probability - Wikipedia, the free encyclopedia
Last edited by a moderator: